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Rumen bacterial community structure impacts feed efficiency in beef cattle
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ABSTRACT: The importance of the rumen micro-
biota on nutrient cycling to the animal is well 
recognized; however, our understanding of the 
influence of the rumen microbiome composition 
on feed efficiency is limited. The rumen micro-
biomes of two large animal cohorts (125 heifers 
and 122 steers) were characterized to identify spe-
cific bacterial members (operational taxonomic 
units [OTUs]) associated with feed efficiency traits 
(ADFI, ADG, and G:F) in beef cattle. The heifer 
and steer cohorts were fed a forage-based diet and a 
concentrate-based diet, respectively. A rumen sam-
ple was obtained from each animal via esophageal 
tubing and bacterial community composition was 
determined through 16S rRNA gene sequencing of 
the V4 region. Based on a regression approach that 
used individual performance measures, animals 
were classified into divergent feed efficiency groups. 
Within cohort, an extreme set of 16 animals from 
these divergent groups was selected as a discovery 

population to identify differentially abundant 
OTUs across the rumen bacterial communities. 
The remaining samples from each cohort were 
selected to perform forward stepwise regressions 
using the differentially abundant OTUs as explana-
tory variables to distinguish predictive OTUs for 
the feed efficiency traits and to quantify the OTUs 
collective impact on feed efficiency phenotypes. 
OTUs belonging to the families Prevotellaceae 
and Victivallaceae were present across models for 
heifers, whereas OTUs belonging to the families 
Prevotellaceae and Lachnospiraceae were present 
across models for steers. Within the heifer cohort, 
models explained 19.3%, 25.3%, and 19.8% of the 
variation for ADFI, ADG, and G:F, respectively. 
Within the steer cohort, models explained 27.7%, 
32.5%, and 26.9% of the variation for ADFI, ADG, 
and G:F, respectively. Overall, this study suggests a 
substantial role of the rumen microbiome on feed 
efficiency responses.
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INTRODUCTION

The U.S.  population is projected to increase 
20% by 2050 (United Nations, 2017). Given a 

per capita beef consumption of 25 kg (ERS and 
USDA, 2017), an additional production of 1.7 
billion kg of beef will be required to meet the 
future demand. However, compared to the pro-
duction of pork, chicken, eggs, or milk, produc-
tion of beef has the most land (27 to 49 m2/kg) 
and energy (34 to 52 MJ) use and higher global 
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warming potential (14 to 32  kg CO2 equivalents) 
(de Vries and de Boer, 2010). Thus, beef produc-
ers are presented with the challenge of increasing 
beef supply while maintaining an economically and 
environmentally sustainable enterprise. As such, to 
increase beef production in the presence of limited 
resources, continuous improvement in the animals’ 
feed efficiency (ability to convert feed to gain) needs 
to be achieved (Capper, 2011).

To date, most feed efficiency studies in beef cat-
tle have concentrated on the host genomics (Snelling 
et al., 2011; Lu et al., 2013) and have reported that 
estimates of heritability for feed efficiency measures 
are moderate, ranging from 0.06 to 0.62 (Berry and 
Crowley, 2013). However, further improvements 
in feed efficiency are needed. With the described 
role of the rumen microbiome on the nutritional 
status of the ruminant host (Storm et  al., 1983; 
Bergman, 1990), one area that is poorly explored 
is the manipulation of the rumen microbiome to 
improve feed efficiency and animal production. To 
date, only a few studies have systematically evalu-
ated the influence of the rumen microbiome on feed 
efficiency (McCann et al., 2014; Myer et al., 2015). 
These studies have observed shifts in certain phyla, 
families, and genera across cattle with different feed 
efficiency phenotypes, yet failed to demonstrate 
the collective influence of these potentially impor-
tant ruminal population groups on feed efficiency. 
Partly, this is due to the small size of the animal 
populations used.

The main objective of the study was to identify 
predominant rumen bacterial groups that explained 
the variation of feed efficiency traits (ADFI, ADG, 
and G:F) in a large population of beef cattle using 
linear regression models.

MATERIALS AND METHODS

All procedures used in this study were approved 
by the U.S. Meat Animal Research Center 
(USMARC) Animal Care and Use Committee. 
Data were collected from a cohort of heif-
ers (n  =  125) during 2009 and a cohort of steers 
(n  =  122) during 2014. These animals were part 
of the USMARC Germplasm Evaluation project 
(GPE) (Schiermiester et  al., 2015) and included 
composite animals with varying percentages of: 
Angus, Beefmaster, Brahman, Brangus, Braunvieh, 
Charolais, Chiangus, Gelbvieh, Hereford, 
Limousin, Maine Anjou, MARC II (composite 
of ¼ Simmental, ¼ Gelbvieh, ¼ Hereford, and ¼ 
Angus), MARC III (composite of ¼ Pinzgauer, ¼ 
Red Poll, ¼ Hereford, and ¼ Angus), Red Angus, 

Red Angus × Simmental, Romosinuano, Salers, 
Santa Gertrudis, Shorthorn, and Simmental.

Heifers were fed a growing diet for 84 d com-
prised of 70% corn silage and 30% alfalfa hay (DM 
basis) and steers were fed a finishing diet for 78 d 
comprised of 57.6% dry-rolled corn, 30% wet dis-
tillers grains with solubles, 8% alfalfa hay, and 4.4% 
vitamin and mineral supplement (DM basis). For 
each animal, individual intake was measured daily 
using an Insentec Feeding System (Marknesse, The 
Netherlands). Radio frequency identification tags 
were placed in the right ear of each animal prior to 
the experiment. Each pen contained eight electronic 
feeding stations allowing for the measurement of 
individual DMI. BW was measured prior to feed 
delivery on two consecutive days at the beginning 
and end of the experiment and on 1 d every 3 wk 
during the experiment. In addition, rumen samples 
were collected via esophageal tubing approximately 
14 d prior to breeding (14 mo of age) for heifers and 
approximately 30 d prior to shipment to the com-
mercial abattoir for harvest for steers. Collection of 
rumen samples was spread over 3 d and done from 
0730 to 0930 h. Following collection, rumen sam-
ples were snap-frozen in liquid nitrogen and stored 
at −80 °C until used for DNA extraction. A study 
by Paz et al. (2016) reported the microbial commu-
nity composition of samples collected via esopha-
geal tubing with addition of particles retained in 
the strainer to be similar to samples collected via 
rumen fistula. Hence, the samples collected herein 
adequately represented the microbial community 
within each animal.

At the end of the feeding period, ADFI and 
ADG were calculated for each animal. ADFI was 
calculated by summing the total DMI for each ani-
mal over the entire period and dividing by days on 
the study and ADG was calculated by regressing BW 
gain on days on feed. Gain-to-feed was calculated 
as ADG divided by ADFI. Breed composition of 
all animals was estimated via a multi-generational 
pedigree. Within cohort, a linear model with breed 
fractions fitted as covariates was employed for both 
ADFI and ADG to obtain the residuals that were 
used as the corrected phenotypes for further ana-
lysis. This was performed to account for the inher-
ent breed differences in ADFI and ADG (Schenkel 
et al., 2011). Preliminary evaluation showed overall 
bacterial community composition differed between 
heifer and steer cohorts (permutational multivariate 
analysis of variance [PERMANOVA], P  <  0.001; 
Figure  1 and Supplementary Figure S1). Within 
cohort, boxplots were created using R v.3.3.1 (R 
Core Team, 2017) to screen outliers (1.5 times 
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the interquartile range above the third quartile or 
below the first quartile) from the residuals of ADFI 
and ADG (Supplementary Figure S2). Two resid-
ual observations of ADG (one from each cohort) 
were classified as outliers and excluded from further 
analyses. Classification of animals into divergent 
feed efficiency groups was performed as described 
by Myer et  al. (2015) with the exception of using 
residuals instead of observations that had not been 
corrected for fixed effects. Residuals of ADG were 
regressed on residuals of ADFI and quadrants were 
created by subdividing the axes where both ADG 
and ADFI reached zero (Figure 2). This approach 
resulted in four feed efficiency groups (represented 

by each Cartesian quadrant) from the combination 
of the two levels of ADG (high and low) and ADFI 
(high and low). The four feed efficiency quadrants 
were high ADG and high ADFI (ADGH–ADFIH), 
high ADG and low ADFI (ADGH–ADFIL), low 
ADG and high ADFI (ADGL–ADFIH), and low 
ADG and low ADFI (ADGL–ADFIL). The four 
most extreme animals from each quadrant (n = 16 
animals/cohort) were selected (Figure  2) and used 
as the discovery population to detect differentially 
abundant features of the microbiome that influence 
feed efficiency traits. The selection of four extreme 
animals from each quadrant for a total extreme 
population of 16 animals was similar to the strategy 

Figure 1. Bipartite network showing significant (PERMANOVA, P < 0.001) difference in bacterial community composition between heifer 
(red squares) and steer (blue squares) cohorts. Green circles represent the distribution of OTUs.

Figure 2. Discovery population sampling method. Within heifer (n = 125) and steer (n = 122) cohorts, linear models with breed fractions fitted 
as covariates were performed for ADFI and ADG and residuals were extracted. Residuals of ADG were regressed on residuals of ADFI. Each 
Cartesian quadrant represented a feed efficiency group from the combination of the two levels of ADG (high and low) and ADFI (high and low). 
A subsample of four animals (red circles) from each quadrant was selected for a total of 16 animals for both the (a) heifer and (b) steer cohorts.
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employed by Myer et al. (2015). The remaining sam-
ples (n = 109 for heifers and n = 106 for steers) were 
used to develop and test linear regression models to 
predict ADG, ADFI, and G:F.

Phenotyping the Rumen Bacterial Community

DNA extraction, library preparation, and sequenc-
ing. Total DNA was extracted from the rumen sam-
ples (0.25 g) using the PowerMag Soil DNA Isolation 
Kit (Mo Bio Laboratories, Inc., Carlsbad, CA, USA) 
according to the manufacturer’s protocol with the 
modifications described below. During cell lysis, two 
bead-beating steps were performed in a TissueLyser 
(Qiagen Inc., Valencia, CA, USA) for 3 min at 30 Hz 
and samples were incubated in a 95 °C water bath for 
5 min between the two bead-beading steps to ensure 
cell lysis. Following the removal of PCR inhibitors, 
nucleic acids were precipitated similar to the proce-
dure describe by Yu and Morrison (2004). Briefly, 
850 µL of sample supernatant and 260 μL of sodium 
acetate (10 mM) were mixed in 1.5 mL Eppendorf 
tubes, vortexed, and incubated on ice for 5 min fol-
lowed by a centrifugation at 16,000 × g for 15 min at 
4 °C. One volume (650 µL) of supernatant was mixed 
with one volume of isopropanol and incubated on ice 
for 30 min followed by a centrifugation at 16,000 × g 
for 15 min at 4 °C. The supernatant was discarded and 
the nucleic acid pellet was wash with ice-cold ethanol 
(70%). The wash was discarded and the nucleic acid 
pellet was dried under vacuum for 3 min and then 
dissolved in 450 µL of Tris (10 mM, pH 8).

Amplicon libraries of the 16S rRNA gene (V4 
region) were prepared as described by Kozich et al. 
(2013). Briefly, each 20 μL PCR amplification reac-
tion contained 0.5 μL Terra PCR Direct Polymerase 
Mix (0.625 Units), 7.5  μL nuclease-free, sterile 
water, 10  μL 2× Terra PCR Direct Buffer, 1  μL 
indexed fusion primers (10 μM), and 1 μL DNA (20 
to 70 ng DNA). The cycling conditions included an 
initial denaturation of 98 °C for 3 min, followed by 
25 cycles of 98 °C for 30 s, 55 °C for 30 s, and 68 °C 
for 45 s; and a final extension of 68 °C for 4 min. 
Following amplification, PCR products from each 
sample were normalized (1 to 2  ng/µL) using the 
SequalPrep Normalization Plate Kit (Invitrogen, 
Carlsbad, CA, USA) as described by the manu-
facturer. The normalized libraries were pooled 
(10  µL/sample) and purified using the MinElute 
PCR Purification Kit (Qiagen, Valencia, CA, 
USA) according to manufacturer’s protocol. The 
resulting concentrated samples were size selected 
using the Pippin Prep (Sage Science, Inc., Beverly, 
MA, USA) automated size selection instrument 

using 1.5% agarose gel cassettes. The resulting 
libraries were quality controlled using the Agilent 
BioAnalyzer 2100 (Agilent Technologies, Santa 
Clara, CA, USA) and quantified using the Qubit 
2.0 Fluorometer (Life Technologies, Carlsbad, CA, 
USA). The resulting libraries were sequenced using 
the Illumina Miseq System (Illumina, San Diego, 
CA, USA) using the V2 500 cycles kit according to 
the manufacturer’s protocol. Raw sequences have 
been deposited at the NCBI Sequence Read Archive 
(SRA) under the accession no. SRP100776.
Data processing. Detailed information about the 
bioinformatics pipeline to reproduce the analyses 
described in this study is available at https://github.
com/FernandoLab/2017_RumenMicrobiome_
Beef. Assembly of contigs and subsequent qual-
ity filtering including removal of sequences with 
ambiguous bases, incorrect length, or improp-
erly assembled were performed using MOTHUR 
v.1.38.1 (Schloss et  al., 2009). Quality-filtered 
sequences were clustered into operational taxo-
nomic units (OTUs) using the UPARSE pipeline 
(USEARCH v7.0.1090) (Edgar, 2013). Clustering 
steps included dereplication, sorting by cluster size 
(descending and not retaining singletons), mapping 
sequences to OTUs at a 97% identity, and filter-
ing of chimeric sequences using UCHIME (Edgar 
et al., 2011) with ChimeraSlayer gold.fa as the ref-
erence database. Representative OTU sequences 
were aligned against the SILVA reference alignment 
database v123 to identify OTUs that mapped to the 
V4 region. Sequences that did not align correctly 
were discarded to ensure all sequences overlapped 
the V4 region. The resulting alignment was used 
to construct a phylogenetic tree using Clearcut 
(Sheneman et al., 2006). Representative sequences 
were assigned taxonomy using QIIME v.1.9.1 
(Caporaso et  al., 2010) with assignments done 
as described in MOTHUR (Schloss et  al., 2009) 
using a Naive Bayes classifier similar to the RDP 
Classifier (Wang et al., 2007), using the Greengenes 
database (gg_13_8_otus) (McDonald et  al., 2012) 
reference sequences. OTUs classified as Archaea 
and Cyanobacteria were removed from the data set. 
The primers used to amplify the bacterial commu-
nity are not designed to amplify all Archaea from 
the rumen and thus the generated data may be mis-
leading on Archaea distribution. Cyanobacteria 
were present in very low abundance across sam-
ples (averaged 0.006% of total quality-filtered 
sequences) and these sequences were removed as 
they likely represented plant chloroplast contamin-
ation (Giovannoni et al., 1988) and were assessed 
to have no impact on the feed efficiency traits 
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investigated in this study. However, it is notewor-
thy that members of the orders YS2, SM1D11, and 
mle1-12 from the phyla Cyanobacteria have been 
proposed to be a new class (Soo et al., 2014) or a 
completely new phylum termed Melainabacteria 
(Di Rienzi et al., 2013) and have been reported to be 
present in the gut of mammals, plants, and soil (Di 
Rienzi et al., 2013; McGorum et al., 2015). These 
taxa were not found within the cyanobacterial 
reads. Alpha metrics were used to describe bacter-
ial richness (observed OTUs), diversity (Shannon–
Weiner index [logarithm base  2]) (Shannon and 
Weaver, 1949), and dominance (1-Simpson index). 
Observed OTUs were also used to construct feed 
efficiency quadrant-based rarefaction curves. To 
reduce the intrinsic effect of animal-to-animal var-
iation in rumen bacterial community composition, 
a core measurable microbiome (CMM) was defined 
as OTUs that were present in all four selected ani-
mals within each feed efficiency quadrant in the dis-
covery population.
Statistical analyses. OTU tables were rarefied 
based on sequencing depth, where the lowest depth 
of 9,081 reads for the heifer cohort and of 12,430 
reads for the steer cohort was used. Rarefaction 
was performed using QIIME v.1.9.1 (Caporaso 
et  al., 2010) implementing the Mersenne Twister 
pseudo-random number generator. Within cohort, 
diversity indices and statistical comparisons of 
the CMM across feed efficiency quadrants were 
conducted on the discovery population. Alpha 
diversity metrics were compared using a nonpar-
ametric (Monte Carlo permutations to calculate 
P-value) two-sample t-test with multiple compar-
isons corrected for false discovery rate (Benjamini 
and Hochberg, 1995). The Good’s coverage (Good, 
1953) was calculated to evaluate adequate sampling 
depth. Overall CMM differences across feed effi-
ciency quadrants were evaluated in R (R Core Team, 
2017) (adonis function vegan package [Oksanen 
et al., 2017]) using the weighted UniFrac distance 
matrix as an input for PERMANOVA using the 
feed efficiency quadrant as the main effect. Pairwise 
comparisons of CMM across feed efficiency quad-
rants were tested with the linear discriminatory ana-
lysis (LDA) effect size (LefSe) (Segata et al., 2011) 
to identify differentially abundant OTUs/bacterial 
features among the feed efficiency quadrants. LefSe 
was executed using default parameters with an 
alpha value of 0.05 for the factorial Kruskal–Wallis 
test among classes and a threshold of LDA score 
of 2.0 for discriminative features. For each cohort, 
the top 10 (highest LDA scores) significant differ-
entially abundant OTUs in each comparison were 

identified for downstream analysis.
Regression models. Within cohort, differentially 
abundant OTUs identified by LefSe were assessed 
as potential microbial features predictive of ADFI, 
ADG, and G:F using the test population. Data 
were transformed using an arcsine square root 
function and feature selection was performed using 
forward stepwise regressions to identify subsets 
of predictive OTUs for each trait. Akaike’s infor-
mation criteria (AIC) were used to select the final 
models and significance of predictive OTUs was 
declared at P ≤ 0.10. For each model, colinearity 
of the independent variables (variance inflation 
factor) was evaluated. Additionally, assumptions 
of linearity (observed vs. predicted values plot) 
(Piñeiro et al., 2008), normality (quantile–quantile 
plot), and homoscedasticity (residuals vs. fitted val-
ues plot) were evaluated. To evaluate model accur-
acy, heifer data were used to assess the steer model 
and in turn the heifer model was assessed using the 
steer data. In addition to OTU-based models, taxa-
based models at the family level were assessed to 
predict ADG, ADFI, and G:F. Within cohort, the 
CMM across feed efficiency quadrants was summa-
rized at the family level and pairwise comparisons 
and regression models were performed as described 
for OTU-based models.
Predicting functional profile from model selected 
bacterial features. The online phylogenetic investi-
gation of communities by reconstruction of unob-
served states (PICRUSt) (Langille et  al., 2013) 
method (v1.1.1) available at http://galaxy.morgan-
langille.com/ was used to predict function based 
on 16S rRNA gene data. OTUs selected across 
feed efficiency models from both the heifer and 
steer cohorts were filtered from the representative 
OTUs sequences file generated from the UPARSE 
pipeline. Then the biom-formatted OTU table was 
generated by close reference picking against the 
Greengenes database (default gg_13_5) followed by 
normalization by copy number and metagenome 
predictions using the KEGG Orthologs option.

RESULTS

A total of 9,281,130 quality-filtered sequences 
were generated across the two cohorts. Before rar-
efying samples (Supplementary Figure S3) within 
cohort to similar sequence depth, the heifer discov-
ery set (16 animals) included 541,804 quality-fil-
tered sequences and the steer discovery (16 animals) 
set included 828,950 quality-filtered sequences. 
To determine if  sampling effort adequately rep-
resented the rumen bacterial communities across 
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feed efficiency quadrants, Good’s coverages were 
calculated and demonstrated that the sampling 
depth obtained for the heifer population repre-
sented 93.9% to 94.5% of the total bacterial com-
munity. For steers, the Good’s coverages predicted 
that 98.6% to 98.9% of the bacterial populations 
were represented suggesting that adequate sam-
pling depth was obtained to evaluate the bacter-
ial community composition. Additionally, rumen 
samples were collected via esophageal tubing (Paz 
et al. 2016) after more than 100 d of diet adapta-
tion where the microbial community was expected 
to be adapted and stable at sampling time based on 
previous reports (Anderson et al., 2016).

Alpha metrics for richness (P ≥ 0.83), diversity 
(P ≥ 0.40), and dominance (P ≥ 0.35) were similar 
across feed efficiency quadrants for both heifers and 
steers (Supplementary Figure S4). Bacteriodetes, 
Firmicutes, and Proteobacteria were the most abun-
dant phyla and combined accounted for 85.9% and 
94.8% of the total reads for heifers (Supplementary 
Figure S5) and steers (Supplementary Figure 
S6), respectively. Additional phyla (relative abun-
dance > 1%) included Fibrobacteres, Tenericutes, 
and Verrucomicrobia for heifers and phylum 
Spirochaetes for both heifers and steers. Phyla com-
position was more variable across feed efficiency 
quadrants from the steer cohort compared to the 
heifer cohort. Substantial inter-animal variation 
in the rumen microbiome composition has been 
reported (Hernandez-Sanabria et al., 2010; Jami and 
Mizrahi, 2012). To reduce animal-to-animal vari-
ation, a CMM was defined for each feed efficiency 

quadrant. For heifers, the CMM was composed 
of 503, 433, 445, and 444 OTUs for the ADGH–
ADFIH, ADGH–ADFIL, ADGL–ADFIH, 
ADGL–ADFIL feed efficiency quadrant, respec-
tively. The overall CMM for the heifer cohort, result-
ing from the combined and unique OTUs across the 
feed efficiency quadrants, was composed of 777 
OTUs (23.3% of total OTUs), which represented 
88.4% of the rarefied quality-filtered reads. For steers, 
the CMM was composed of 147, 124, 143, and 77 
OTUs for the ADGH–ADFIH, ADGH–ADFIL, 
ADGL–ADFIH, ADGL–ADFIL feed efficiency 
quadrant, respectively. The overall CMM for the 
steer cohort was composed of 240 OTUs (15.2% of 
total OTUs) which represented 82.1% of the rarefied 
quality-filtered reads. Bacterial communities did not 
cluster by feed efficiency quadrant in the principal 
coordinates analysis (PCoA) plots for both heifer 
and steer cohorts (Figure  3). PERMANOVA sup-
ported no overall bacterial community composition 
differences across feed efficiency quadrants within 
heifer (P = 0.64) and steer (P = 0.16) cohorts.

To further investigate potential rumen bacter-
ial community differences across feed efficiency 
quadrants, differentially abundant OTUs across 
the CMM were identified using the LefSe algo-
rithm. A  total of 259 and 98 significant differen-
tially abundant OTUs with LDA scores ≥ 2 were 
identified across pairwise comparisons of the feed 
efficiency quadrants for the heifer (Figure 4a) and 
steer (Figure  5a) cohorts, respectively. Overall, 
differentially abundant OTUs were distinctive 
between cohorts (Supplementary Figure S7) with 

Figure 3. Principal coordinates analysis (PCoA) using the weighted UniFrac distance matrix displaying no structuring of bacterial communi-
ties by feed efficiency quadrant for (a) heifer and (b) steer cohorts.
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only six differentially abundant OTUs in common 
among some samples from both cohorts. Three of 
the shared differentially abundant OTUs belonged 
to the family Lachnospiraceae and the remain-
ing belonged to the families Paraprevotellaceae, 
Prevotellaceae, and Veillonellaceae. Subsets of 
42 and 47 uniquely differentially abundant OTUs 
among heifers (Figure  4b) and steers (Figure  5b) 
were identified, respectively, for subsequent analysis 

to identify features of the microbiome that influ-
ence ADFI, ADG, and G:F using a forward step-
wise regression approach.

Rumen Bacterial Features Affecting ADFI, ADG, 
and G:F

Final models for predicting ADFI, ADG, and 
G:F in heifer and steer cohorts are presented in 

Figure 4. Average linkage hierarchical clustering based on Bray–Curtis dissimilarity of differentially abundant OTUs identified through pair-
wise comparisons of the CMM across all feed efficiency quadrants within heifer cohort. (a) All differentially abundant OTUs across comparisons 
and (b) selected differentially abundant OTUs used in forward stepwise regression analysis to identify predictive OTUs for feed efficiency traits.

Figure 5. Average linkage hierarchical clustering based on Bray–Curtis dissimilarity of differentially abundant OTUs identified through pair-
wise comparisons of the CMM across all feed efficiency quadrants within steer cohort. (a) All differentially abundant OTUs across comparisons 
and (b) selected differentially abundant OTUs used in forward stepwise regression analysis to identify predictive OTUs for feed efficiency traits.
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Tables 1 and 2, respectively. Diagnostic plots did 
not expose patterns or deviations from normality 
in the distribution of the residuals.

ADFI Models

The model for heifers explained 19.3% of the 
variation in breed-corrected ADFI. OTUs belong-
ing to the families Ruminococcaceae, Victivallaceae, 
and an unclassified OTU belonging to the order 
Bacteroidales were associated with an increase in 
ADFI. In contrast, an OTU belonging to the fam-
ily Prevotellaceae and an unclassified OTU belong-
ing to the order Bacteroidales were associated with 
a decrease in ADFI.

The model for steers explained 27.7% of 
the variation in breed-corrected ADFI. OTUs 
belonging to the families Bifidobacteriaceae, 
Lachnospiraceae, Paraprevotellaceae, Prevotellaceae, 
and Veillonellaceae were associated with an increase 
in ADFI, whereas OTUs belonging to the families 
Lachnospiraceae, S24-7, Veillonellaceae, and an 

unclassified OTU belonging to the order Bacteroidales 
were associated with a decrease in ADFI.

ADG Models

Models explained 25.3% and 32.5% of the vari-
ation in breed-corrected ADG for heifers and steers, 
respectively. Five out of  the six OTUs in the ADG 
model were shared with the ADFI model in heif-
ers. The remaining OTU was of  the Prevotellaceae 
family, which was indicative of  an increase in ADG. 
For steers, the ADG model shared only two OTUs 
with the ADFI model. Additionally, the ADG 
model consisted of  OTUs with positive coefficients, 
which included Lachnospiraceae, Prevotellaceae, 
Ruminococcaceae, S24-7, and Veillonellaceae fam-
ilies and OTUs with negative coefficients, which 
included Erysipelotrichaceae, Lachnospiraceae, 
and Prevotellaceae families and an unclassified 
OTU from the order Bacteroidales. Furthermore, 
we also identified an OTU that had no taxonomic 
classification beyond kingdom bacteria.

Table 1. Final linear models constructed using forward stepwise regression for predicting ADFI, ADG, and 
G:F for the heifer cohort

Trait Predictor Coefficient SEa t-statistic P-value AICb R2c Taxonomyd

ADFI Intercept −1.5397 0.6206 −2.481 0.014813 −53.73 0.1933
OTU233 −13.4688 4.9111 −2.743 0.007249 Order Bacteroidales

OTU6532 32.1372 8.6851 3.700 0.000356 Order Bacteroidales
OTU257 9.0497 8.7212 1.038 0.301976 Paraprevotellaceae
OTU2045 −23.0393 9.5493 −2.413 0.017696 Prevotellaceae
OTU125 13.8999 6.4527 2.154 0.033682 Victivallaceae
OTU517 14.6939 7.6863 1.912 0.058836 Ruminococcaceae

OTU5323 6.6179 4.6455 1.425 0.157453 Prevotellaceae
OTU139 4.0825 2.5744 1.586 0.116011 BS11
OTU216 10.3417 6.8966 1.500 0.136951 Prevotellaceae
OTU5133 13.4651 9.9425 1.354 0.178757 Order Clostridiales

ADG Intercept −0.07717 0.08848 −0.872 0.385160 −402.03 0.2526
OTU233 −4.33233 0.95934 −4.516 0.000017 Order Bacteroidales
OTU139 1.50292 0.51951 2.893 0.004666 BS11

OTU6532 6.09776 1.73445 3.516 0.000656 Order Bacteroidales
OTU125 3.78944 1.30628 2.901 0.004558 Victivallaceae

OTU2045 −5.17327 1.89001 −2.737 0.007313 Prevotellaceae
OTU89 2.14906 1.20975 1.776 0.078640 Prevotellaceae

G:F Intercept 0.004628 0.008792 0.526 0.599771 −874.92 0.1979
OTU233 −0.435453 0.109636 −3.972 0.000133 Order Bacteroidales
OTU139 0.145833 0.058925 2.475 0.014976 BS11
OTU125 0.503240 0.173214 2.905 0.004500 Victivallaceae

OTU6532 0.497373 0.198486 2.506 0.013798 Order Bacteroidales
OTU2045 −0.495401 0.217485 −2.278 0.024821 Prevotellaceae
OTU4675 −0.381987 0.215910 −1.769 0.079850 Fibrobacteraceae

aStandard error.
bAkaike information criteria.
cAdjusted R-squared.
dFamily level classification, unless otherwise specified.
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G:F Models

The model of G:F for heifers accounted for 
19.8% of the variation. The five OTUs shared 
between the ADFI and ADG models were also 
found in the G:F model. In addition, an OTU 
of the Fibrobacteraceae family with negative 

coefficient was identified. The model of G:F for 
steers accounted for 26.9% of the variation. The 
model shared four OTUs with the ADFI model 
and four OTUs with the ADG model. The model 
also included OTUs belonging to Lachnospiraceae, 
Prevotellaceae, and Spirochaetaceae families which 
were associated with a decrease in G:F.

Table 2. Final linear models constructed using forward stepwise regression for predicting ADFI, ADG, and 
G:F for the steer cohort

Trait Predictor Coefficient SEa t-statistic P-value AICb R2c Familyd

ADFI Intercept −0.009771 0.330669 −0.030 0.97649 −28.42 0.2766
OTU3879 11.920275 5.015395 2.377 0.01949 Veillonellaceae
OTU103 −6.724807 2.719246 −2.473 0.01519 S24-7
OTU88 −7.112484 2.603974 −2.731 0.00753 Lachnospiraceae
OTU50 −8.319334 2.474744 −3.362 0.00112 Order Bacteroidales
OTU25 3.368074 1.240464 2.715 0.00788 Paraprevotellaceae
OTU252 12.699986 4.035271 3.147 0.00221 Bifidobacteriaceae
OTU301 −22.733747 7.482761 −3.038 0.00308 Lachnospiraceae
OTU1874 9.573695 3.494031 2.740 0.00735 Lachnospiraceae
OTU41 3.467929 1.793902 1.933 0.05622 Prevotellaceae

OTU3670 −22.559447 13.208508 −1.708 0.09095 Veillonellaceae
OTU2441 13.008597 8.933797 1.456 0.14869 Veillonellaceae

ADG Intercept −0.15129 0.07448 −2.031 0.045166 −421.2 0.3253
OTU3081 −1.24675 0.36013 −3.462 0.000822 Prevotellaceae

OTU17 1.41205 0.46712 3.023 0.003261 Lachnospiraceae
OTU14 1.55317 0.37485 4.143 0.0000771 Ruminococcaceae
OTU301 −5.60318 1.45543 −3.850 0.000221 Lachnospiraceae
OTU2441 0.81738 1.37135 0.596 0.552646 Veillonellaceae
OTU60 1.21132 0.62366 1.942 0.055231 Prevotellaceae
OTU65 0.94873 0.34944 2.715 0.007945 S24-7
OTU87 −0.76844 0.39937 −1.924 0.057496 Prevotellaceae
OTU9 0.23146 0.14044 1.648 0.102815 S24-7

OTU218 −1.41796 0.65253 −2.173 0.032405 Unclassified
OTU50 −0.73642 0.36059 −2.042 0.044055 Order Bacteroidales
OTU227 1.55665 0.84442 1.843 0.068555 Lachnospiraceae
OTU738 −5.74874 2.56477 −2.241 0.027457 Erysipelotrichaceae
OTU3879 0.69638 0.37874 1.839 0.069264 Veillonellaceae
OTU36 0.81395 0.54440 1.495 0.138377 Ruminococcaceae

G:F Intercept 0.026852 0.006685 4.017 0.000119 −860.39 0.2691
OTU41 −0.145112 0.039828 −3.644 0.000440 Prevotellaceae
OTU60 0.168961 0.078669 2.148 0.034305 Prevotellaceae
OTU12 −0.035520 0.021140 −1.680 0.096228 Prevotellaceae

OTU4409 −0.454518 0.202494 −2.245 0.027140 Spirochaetaceae
OTU103 0.159020 0.055477 2.866 0.005123 S24-7
OTU25 −0.042017 0.022642 −1.856 0.066632 Paraprevotellaceae

OTU3879 −0.054002 0.028532 −1.893 0.061482 Veillonellaceae
OTU218 −0.134513 0.080154 −1.678 0.096633 Unclassified
OTU3081 −0.093784 0.044315 −2.116 0.036961 Prevotellaceae

OTU48 −0.139982 0.067582 −2.071 0.041072 Lachnospiraceae
OTU168 0.147043 0.101650 1.447 0.151346 Order Bacteroidales

aStandard error.
bAkaike information criteria.
cAdjusted R-squared.
dFamily level classification, unless otherwise specified.
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Taxa-Based Models at the Family Level

Compared to OTU-based models, models at 
the family level explained less of  the variation in 
ADFI, ADG, and G:F in both heifers and steers 
(Supplementary Tables S1 and S2). For heifers, 
models explained 7.79%, 12.0%, and 14.2% of the 
variation in ADFI, ADG, and G:F, respectively. 
For steers, models explained 11.8%, 6.43%, and 
8.80% of the variation in ADFI, ADG, and G:F, 
respectively.

Predicting the Functional Role of Bacterial 
Features in the Models

To gain insight of  the functions from the bac-
terial OTUs identified in the feed efficiency models 
and how they potentially influence feed efficiency, 
PICRUSt was used to predict functional features. 
Within heifers, bacterial OTUs (89, 125, 139, 233, 
and 6532)  identified across feed efficiency mod-
els were predicted to have functional categories 
related to glycolysis and gluconeogenesis, glycan 
degradation, protein degradation (peptidases), 
nitrogen metabolism, and biosynthesis of  essen-
tial AA such as lysine, valine, leucine, or isoleu-
cine. Similarly, within steers, bacterial OTUs (14, 
17, 60, 65, 87, 227, 301, 738) identified across feed 
efficiency models were predicted to have func-
tional categories related to glycolysis and glucone-
ogenesis, glycan degradation, protein degradation 
(peptidases), and starch and sucrose metabolism. 
Interestingly, a majority of  the OTUs identified 
through the regression models were predicted 
to have higher number of  transporters. Further 
investigation of  the distribution of  transporters 
revealed a numerically higher association with 
positive coefficient OTUs compared to negative 
coefficient OTUs (Supplementary Figure S8).

DISCUSSION

Feed efficiency is an economically important 
trait for sustainable beef production. Multiple fac-
tors such as nutrition and management practices (de 
Ondarza and Tricarico, 2017), genetics, and physio-
logical mechanisms (Herd and Arthur, 2009) influ-
ence feed efficiency responses. Moreover, the rumen 
microbial community mediates energy available to 
the animal through pregastric fermentation, which 
suggests a role in feed efficiency. Since bacteria are 
the prevalent microorganism in the rumen (1011 via-
ble cells/g rumen content) (Mackie et al., 2001), we 
evaluated the rumen bacterial community compos-
ition to investigate its influence on feed efficiency.

Microbial Community Composition in the Steer and 
Heifer Cohorts

Across feed efficiency quadrants for both cohorts 
(steer and heifer), no differences in rumen bacterial 
richness and diversity were observed. Similar obser-
vations in beef cattle have been previously reported 
when evaluating different variable regions (V1–
V3 [Myer et al., 2015] and V4–V6 [McCann et al., 
2014]). The overall bacterial community compos-
ition was significantly different between heifer and 
steer cohorts (PERMANOVA, P < 0.001; Figure 1). 
This difference in rumen bacterial community com-
position is confounded by diet, gender, and time. 
Therefore, in our subsequent analyses and inter-
pretations, we analyzed and described the cohorts 
independently. The main phyla identified in both 
cohorts included Bacteriodetes, Firmicutes, and 
Proteobacteria. These phyla have been observed to 
be predominant in beef cattle fed either high-forage 
or high-concentrate diets (Petri et al., 2013; McCann 
et al., 2014; Myer et al., 2015). Comparable to other 
studies (McCann et  al., 2014; Myer et  al., 2015), 
the overall rumen bacterial community compos-
ition was similar across feed efficiency quadrants 
within cohorts (PERMANOVA, P ≥ 0.16; Figure 3). 
A greater number of significant OTUs were observed 
in heifers fed a forage-based diet compared to steers 
fed a grain-based diet. This was not surprising as 
dietary increase of highly fermentable substrates has 
been observed to decrease rumen microbial diversity 
as microbes that more efficiently utilize these sub-
strates dominate the microbial community structure 
(Fernando et al., 2010).

To investigate the role of the rumen microbiome 
on feed efficiency, we evaluated differences in the 
rumen bacterial community using defined feed effi-
ciency phenotypes based on ADFI and ADG. To 
this end, a discovery population within each cohort 
was used to define a CMM for each feed efficiency 
quadrant. Then, differentially abundant OTUs that 
potentially described each feed efficiency pheno-
type were identified (see Materials and Methods). 
In heifers, 10 OTUs were included in the ADFI 
model. Among the 10 OTUs identified, five OTUs 
were significantly associated with ADFI and mainly 
(3/5) belonged to the order Bacteroidales (Table 1). 
Out of the three OTUs belonging to Bacteroidales, 
only one was classified beyond order and belonged 
to the Prevotellaceae family. The remaining two sig-
nificant OTUs belonged to the Ruminococcaceae 
and Victivallaceae families. Ruminococcaceae 
members are well known to be present in the rumen 
(Russell et  al., 2009) and to possess cellulolytic 
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activity (White et al., 1993). Additionally, the fam-
ily Victivallaceae has been isolated from human 
feces and has been shown to ferment cellobiose 
(Zoetendal et  al., 2003). The observation of bac-
terial members related to fiber degradation influ-
encing ADFI in the heifer cohort is not surprising 
given that the diet fed was composed exclusively 
of corn silage and alfalfa hay. In steers, half  (5/10) 
of the OTUs with a significant effect on ADFI 
belonged to the order Clostridiales and included 
microbes belonging to families Lachnospiraceae 
and Veillonellaceae (Table  2). Myer et  al. (2015) 
found an OTU of the Veillonellaceae family and 
an OTU of the Clostridiales order to be associ-
ated with ADFI. Four of the remaining signifi-
cant OTUs belonged to the order Bacteroidales 
and included members of the families S24-7, 
Paraprevotellaceae, and Prevotellaceae. In add-
ition, Bifidobacteriaceae was identified to be asso-
ciated with ADFI. Interestingly, although not the 
same OTU, Prevotellaceae was significantly associ-
ated with ADFI in both heifers and steers suggest-
ing that members of this predominant family may 
be associated with ADFI independent of diet.

The ADG model for the heifer cohort included 
six significant OTUs (Table 1). Five OTUs belonged 
to the order Bacteroidales (BS11, Prevotellaceae, 
and unclassified families) and one OTU belonged 
to the order Victivallales (Victivallaceae family). 
For steers, the ADG model included 13 signifi-
cant OTUs from families belonging to the orders 
Bacteroidales (six OTUs), Clostridiales (five OTUs), 
and Erysipelotrichales (one OTU). Taxonomic ana-
lysis revealed that in both heifer and steer cohorts, 
members of the Prevotellaceae family were clas-
sified as Prevotella at the genus level. Within the 
rumen microbiome, Prevotella is a dominant bacter-
ial genus (Stevenson and Weimer, 2007) with roles 
in the digestion of polysaccharides (Matsui et  al., 
2000) and protein (Wallace, 1996). Prevotella repre-
sented ~28.5% of the rarefied quality-filtered reads 
in both heifer and steer cohorts. In steers, OTUs of 
the Lachnospiraceae were classified as Butyrivibrio at 
the genus level. Butyrivibrio species have hemicellulo-
lytic, proteolytic, and uricolytic activities (Cotta and 
Hespell, 1986; Kelly et al., 2010). The ability to break 
the aforementioned compounds paralleled the diet-
ary supply, as the diet contained a high concentration 
of wet distillers grains with solubles, a feed com-
posed of mainly protein, fiber, and fat (Klopfenstein 
et al., 2007). Associations between ADG and mem-
bers of the families Lachnospiraceae, Prevotellaceae, 
Veillonellaceae, and Victivallaceae have previously 
been observed in beef cattle (Myer et al., 2015). For 

steers, the taxa-based model (Supplementary Table 
S1) for ADG included the Lachnospiraceae family 
supporting an important role of this family on ADG 
when feeding high-concentrate diets.

The G:F model included six significant OTUs for 
the heifer cohort (Table 1). Families belonged to the 
orders Bacteroidales (four OTUs), Fibrobacterales 
(one OTU), and Victivallales (one OTU). All the 
OTUs in the G:F model that were shared with the 
ADFI and ADG models kept the direction of their 
effect. For instance, if an OTU had a positive coef-
ficient in either ADFI or ADG, it also had a pos-
itive coefficient on G:F. For the steer cohort, the 
G:F model included 10 significant OTUs mainly 
(four OTUs) of the Prevotellaceae family. None of 
the four OTUs shared between the G:F and ADFI 
models had similar direction of their effects, whereas 
three out the four OTUs shared between the G:F 
and ADG models had the same direction of their 
effects and belonged to Prevotellaceae and unclas-
sified families. McCann et  al. (2014) identified an 
OTU of the order Bacteroidales to be associated with 
more efficient steers (negative residual feed intake) 
in grazing conditions. However, Shabat et al. (2016) 
found members of the order Bacteroidales to be 
more abundant in inefficient (positive residual feed 
intake) dairy cows. Interestingly, in the previously 
mentioned study, only 2 out 18 differentially abun-
dant species were associated with efficient dairy cows 
and complemented with lower richness and higher 
dominance values in efficient compared to inefficient 
cows suggested a less diverse microbiome in efficient 
cows. In the current study, we identified members 
of the order Bacteroidales with positive or negative 
coefficients on G:F in both heifer and steer cohorts. 
Consistent with our results, Prevotella spp. have been 
observed to have both positive (Hernandez-Sanabria 
et  al., 2012) and negative (Carberry et  al., 2012; 
Hernandez-Sanabria et  al., 2012; McCann et  al., 
2014) associations with feed efficiency. In dairy cows, 
members of the Prevotellaceae family have been 
associated with inefficient cows (Shabat et al., 2016). 
Based on microbial transcriptome profiles, Li et al. 
(2016) reported Lachnospiraceae and Veillonellaceae 
to be associated with less efficient steers and is simi-
lar to the results observed in the G:F model of steers 
in this study.

When steer cohort data were used to evaluate 
the heifer models and vice versa, adjusted R2 val-
ues for ADFI, ADG, and G:F were substantially 
decreased (Table  3). This is likely attributable to 
many factors including diet, gender, and age being 
different between the two cohorts. Figure 4 clearly 
depicts different bacterial community clustering 
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between the cohorts. Yet, the G:F model devel-
oped for steers was able to predict 11% of the 
variation when using the heifer data, even with 
OTUs not being similar across the two cohorts. It 
is important to remember that various manage-
ment or environmental conditions (diets, breeds, 
gender, etc.) affect microbial community. As such 
the models proposed herewith may not be robust 
across other management and environmental 
parameters and further testing will be required 
to determine robustness in different populations 
on similar diets. In the taxa-based models, when 
steer cohort data were used to evaluate the heifer 
models and vice versa (Supplementary Table S3), 
the models were incompatible. Significant models 
were observed for ADG and G:F within the steer 
cohort and accounted for 4% and 5% of the varia-
tion, respectively. This suggests that the abundance 
of  certain bacterial species might affect feed effi-
ciency in cattle rather than overall changes in the 
microbial community taxa. The current study built 
models focused on the associations between bac-
teria and feed efficiency traits; however, inclusion 
of  other rumen microorganisms could potentially 
lead to improved models through a more holistic 
approach.

As expected, functional prediction of  bacter-
ial OTUs in the feed efficiency models identified 
metabolic pathways involved in starch and carbo-
hydrate metabolism and protein metabolism. Feed 
efficiency is greatly influenced by the ability of  the 
microbes to extract energy from the diet and the 
capacity of  the microbes to produce microbial cell 
protein as a protein source for the host. However, 
the prediction of  increased number of  transporters 
in the OTUs identified in the models was surpris-
ing. Previous studies have reported the increased 

abundance of  transporters in the rumen and their 
role in mediation of  nutrient uptake (Popova et al., 
2017). It is possible that in addition to increased 
metabolism, efficient and broader uptake of  nutri-
ents by the microbes can influence animal perfor-
mance and efficiency. As such, further investigating 
how nutrient transport and the abundance of  nutri-
ent transporters such as ABC transporters affect 
animal efficiency might be interesting. Future 
studies utilizing shotgun metagenome sequencing 
of  the rumen microbiome in different feed effi-
ciency phenotypes may provide more insight into 
the role of  nutrient transporters and the type of 
transporters that may influence feed efficiency in 
the ruminant animal.

CONCLUSIONS

The critical role of the rumen microbiome in 
feed digestion within the ruminant animal suggests 
microbial features influence feed efficiency. This 
study identified a subset of bacterial OTUs that 
impact feed efficiency in heifers and steers in grow-
ing and finishing diets, respectively. Additionally, 
this study showed that approximately 20% of the 
variation in feed efficiency traits (ADFI, ADG, 
G:F) can be explained using the rumen microbi-
ome in beef cattle. The rumen microbiome is an 
important factor that influences feed efficiency and 
research that includes the rumen microbiome func-
tional capacity could provide novel opportunities 
to improve our understanding of genes and mecha-
nisms that influence feed efficiency towards increas-
ing the productivity of animal operations.
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Animal Science online.
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Table 3. Evaluation of model accuracy to predict 
ADFI, ADG, and G:F for the heifer and steer 
cohorts

Traita P-value R2b

ADFI
 Heifer 0.50 <0.01
 Steer 0.40 <0.01
ADG
 Heifer 0.08 0.05
 Steer 0.16 0.05
G:F
 Heifer 0.85 <0.01
 Steer 0.01 0.11

aHeifer data were used to assess the steer model and steer data were 
used to assess the heifer model.

bAdjusted R-squared.
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